Вася хочет сделать подарок

Презентация по русскому языку на тему «Учимся применять орфографические правила» (2 класс)

Описание презентации по отдельным слайдам:

8 апреля Классная работа

Упражнение 1, стр. 22

Упражнение 1, стр. 22 е е е е о о о о я я я а а а

Трищат морозы. Наелях и соснах шапки снега. Вася петров вместе с собакой Рексом отправились в лес за ёлкой. Вася хочет сделать падарок своей семе к Новому году. 2 1 1 1 Упражнение 6, стр. 22

Трещат морозы. На елях и соснах шапки снега. Вася Петров вместе с собакой Рексом отправились в лес за ёлкой. Вася хочет сделать подарок своей семье к Новому году. 2 1 1 1 Упражнение 6, стр. 22

Упражнение 2, стр. 22-23 и

Упражнение 2, стр. 22-23 е и

Упражнение 2, стр. 22-23 е и г

Упражнение 2, стр. 22-23 е и г е

Упражнение 2, стр. 22-23 е и г е и

Упражнение 2, стр. 22-23 е и г е и о

Упражнение 2, стр. 22-23 е и г е и о е

Упражнение 2, стр. 22-23 е и г е и о е ь

Упражнение 2, стр. 22-23 е и г е и о е ь е

Упражнение 2, стр. 22-23 е и г е и о е ь е о

Упражнение 2, стр. 22-23 е и г е и о е ь е о и

Упражнение 2, стр. 22-23 е и г е и о е ь е о и е

Упражнение 2, стр. 22-23 е и г е и о е ь е о и е и

Упражнение 2, стр. 22-23 е и г е и о е ь е о и е и еж

Упражнение 2, стр. 22-23 е и г е и о е ь е о и е и еж а

Упражнение 3, стр. 23

Номер материала: ДБ-1208261

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник статьи: http://infourok.ru/prezentaciya-po-russkomu-yazyku-na-temu-uchimsya-primenyat-orfograficheskie-pravila-2-klass-4348967.html

Олимпиадные задачи для 5 класса
олимпиадные задания по математике (5 класс)

Задания для подготовки к олимпиаде по математике в 5 классе часть 1

Скачать:

Вложение Размер
zadaniya_dlya_podgotovki_k_olimpiade_po_matematike_v_5_klasse.docx 19.19 КБ

Предварительный просмотр:

ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ОЛИМПИАДЕ ПО МАТЕМАТИКЕ В 5 КЛАССЕ

1. На полке в один ряд стоят книги. Энциклопедия стоит пятой слева и семнадцатой справа. Сколько книг на полке?

2. Двое поделили между собой 7 рублей, причем один из них получил на 3 рубля больше другого. Сколько кому досталось?

Ответ. Одному — 2 рубля, другому — 5 рублей.

3. Число 2002 «симметричное», т.е. читается одинаково слева-направо и справа-налево. Напишите следующее за ним симметричное число.

4. Торговец купил корову за 7 долларов, продал ее за 8, потом вновь купил ту же корову за 9 долларов и опять продал за 10. Какую прибыль он получил?

Ответ. 2 доллара.

5. Напишите наименьшее 10-значное число, все цифры которого различны.

6. В коробке 14 белых и 14 чёрных шариков. Какое минимальное количество шариков нужно достать из коробки, чтобы среди них наверняка оказалось 2 черных шарика?

7. Ученики одного класса съели 95 конфет, причем каждый мальчик съел 3 конфеты, а каждая девочка — 5 конфет. Сколько в классе мальчиков и сколько девочек, если всего в классе 25 человек?

Ответ. 15 мальчиков и 10 девочек.

8. После битвы со Змеем Горынычем три богатыря заявили:
Добрыня Никитич: «Змея убил Алеша Попович.»
Илья Муромец: «Змея убил Добрыня Никитич.»
Алеша Попович: «Змея убил я.»
Кто убил змея, если только один из богатырей сказал правду?

Ответ. Добрыня Никитич.

9. Два поезда, оба длиной 50 м, движутся навстречу друг другу со скоростью 45 км/ч. Сколько времени пройдёт от момента, когда встретятся машинисты, до момента, когда встретятся проводники последних вагонов?

Ответ. 4 секунды.

10. Чему равна сумма 123456789 + 234567891 + 345678912 + … + 912345678?

11. Произведение двух чисел умножили на их разность. Могло ли получиться 30?

Решение. Могло. Например: 5·2·(5 − 2) = 30.

12. Ваня, задумав некоторое число, умножил его на 2, затем к результату прибавил 3, после чего получившееся число разделил на 7, а потом, уменьшив частное на 1, сказал, что у него получилось число 2. Определите, какое число задумал Ваня.

Решение. Будем решать задачу с конца. В итоге у Вани получилось 2, значит, перед вычитанием 1 у него было 3. Аналогично перед делением на 7 у него было 21, перед прибавлением 3 — было 18, а перед умножением на 2 — было 9.

13. Расставьте в квадрате 4×4 одного короля, одного слона и двух ладей так, чтобы они не били друг друга.

Решение. Например, так:

14. Есть 100 комнат и 100 мальчиков, каждый из которых находится в одной из комнат. На двери каждой комнаты написано: «Тут ровно один мальчик». Известно, что среди этих надписей есть ровно три неверные. Докажите, что в одной из комнат находятся три мальчика.

Решение. Так как из ста надписей ровно 3 неверные, то 97 из них верные. Значит, в этих 97 комнатах по одному мальчику. Тогда в остальных трёх комнатах с неверными надписями всего 3 мальчика. При этом ни в какой из этих трёх комнат не может быть ровно один мальчик, так как иначе надпись на такой комнате будет верной. Трёх мальчиков можно распределить по трём комнатам следующими способами: 3 − 0 − 0, 2 − 1 − 0, 1 − 1 − 1. Последние два варианта не подходят, поэтому в какой-то комнате точно находятся три мальчика.

15. Можно ли расположить по кругу числа 1, 2, . 8 так, чтобы сумма любых трёх рядом стоящих чисел была больше 13?

Решение. Нельзя.
Предположим, что такая расстановка возможна. Рассмотрим все возможные тройки подряд стоящих чисел. Каждое число войдёт ровно в три такие тройки, и в каждой тройке сумма чисел должна быть больше 13, а значит, не меньше 14. Всего троек будет 8, тогда общая сумма чисел в них будет не меньше, чем 14·8 = 112. В эту сумму каждое из выписанных чисел входит по три раза. Тогда получается, что сумма чисел от 1 до 8 равна числу, которое не меньше, чем 112⁄3 > 37. Но 1 + 2 + … + 8 = 8·9⁄2 = 36. Противоречие, значит указанной в условии расстановки не существует.

Занятие 2.Плюс-минус один

1. Зайцы нашли в лесу бревно длиной 6 м. Чтобы отнести домой, они распилили его на части длиной по 1 метру. Сколько они сделали распилов?

Решение. После каждого распила одна часть распадается на две, т.е. количество частей увеличивается на 1. В начале была одна часть (целое бревно), в итоге стало 6. Значит, было сделано 6 − 1 = 5 распилов.

2. Из книги выпал кусок, у первой страницы которого номер 35, а у последней — 74. Сколько страниц выпало?

Решение. Рассмотрим страницы с 1-й по 74-ю. Из них в выпавший кусок не входят с 1-й по 34-ю. Значит, выпало 74 − 34 = 40 страниц.

3. Теперь у зайцев уже несколько бревен. Они распили все бревна, сделав 20 распилов, и получили 27 чурбачков. Сколько бревен было у зайцев?

Решение. Так как после каждого распила количество чурбачков увеличивается на 1, то значит, после 20 распилов их количество также увеличилось на 20. Тогда изначально у зайцев было 27 − 20 = 7 брёвен.

4. Сколько всего существует двузначных чисел? А трёхзначных?

Решение. Двузначные числа — это 10, 11, 12, . 99. Всего их 99 − 9 = 90.
Аналогично трёхзначных чисел 999 − 99 = 900.

5. Улитке надо подняться на столб высотой 10 м. Каждый день она поднимается на 4 м, а каждую ночь сползает на 3 м. Когда улитка доползёт до цели, если она стартовала в понедельник утром?

Решение. За сутки (день и ночь) улитка будет продвигаться по столбу на 1 м (подниматься на 4 м днём и опускаться на 3 м ночью). В итоге после 6 суток она окажется на высоте 6 м и за следующий день доползёт до верха.

6. Главное здание МГУ состоит из нескольких секторов. Этажи в разных секторах отличаются по высоте. Из-за этого, например, получается, что переходы с 13 этажа сектора А ведут на 19 этаж секторов Б и В. Как соотносятся по высоте этажи в этих секторах?

Решение. Уровень пола 13 этажа сектора А совпадает с уровнем пола 19 этажа секторов Б и В. Значит, высота первых 18 этажей сектора А равна высоте первых 12 этажей в Б и В. Тогда отношение равно 18:12 или 2:3.

7. Сколько раз за сутки на часах минутная стрелка обгонит часовую?

Решение. За первые 12 часов минутная стрелка обгонит часовую 10 раз: каждый час, кроме первого и последнего. В 0 ч и 12 ч стрелки совместятся. Так как мы рассматриваем промежуток времени в 24 часа, то стрелки пойдут дальше. Их совпадение в 12 ч дня тоже нужно считать обгоном.
За следующие 12 часов произойдёт ещё 10 обгонов, а всего их будет 10 + 1 + 10 = 21.

8. Для нумерации страниц в книге потребовалось 2322 цифры. Сколько страниц в этой книге?

Решение. Всего есть 9 однозначных и 90 двузначных номеров. На них приходится 9 + 2·90 = 189 цифр. Остаётся 2322 − 189 = 2133 цифр. Они образуют 2133⁄3 = 711 трёхзначных последовательных номеров. Значит, всего страниц 99 + 711 = 810.

9. В ряд выписаны все натуральные числа:
1234567891011121314151617181920.
Какая цифра стоит на 2010 месте?

Решение. Посмотрим какому числу будет принадлежать эта цифра. Первые 9 цифр относятся к однозначным числам, следующие 2·90 = 180 к двузначным. Остаётся ещё 2010 − 189 = 1821 цифра. Из них состоят 1821⁄3 = 607 трёхзначных чисел. Последнее из них будет равно 99 + 607 = 706. Значит, 2010-я цифра будет 6.

10. Серёжа купил тетрадь объемом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Данил вырвал из этой тетради какие-то 50 страниц и сложил все 50 чисел, которые на них написаны. Докажите, что у него не могла получиться сумма 2010.

Решение. Вырванные страницы пронумерованы 50 последовательными числами. Среди них 25 чётных и 25 нечётных. Но сумма, содержащая нечётное количество нечётных слагаемых, нечётна, а значит, 2010 быть равна не может.

По теме: методические разработки, презентации и конспекты

Программа дистанционного курса для учеников 5-6 классов «Олимпиадные задачи и задачи повышенной сложности по математике».

Можно использовать этот материал для проведения олимпиады по физике как в школе, так и в округе.

Задания для индивидуальной работы учащихся.

Материал для проведения олимпиады.

олимпиадные задачи 5 класс.

С 2013 года участвую в работе инновационной площадки «Центр дополнительного образования – интегрирующая образовательная среда по работе с одарёнными детьми».Решение задач способствует более глубокому .

Рабочая программа учебного курса по математике в рамках внеурочной деятельности для 8 класса «Решение олимпиадных задач по математике&quot.

Источник статьи: http://nsportal.ru/shkola/matematika/library/2020/10/20/olimpiadnye-zadachi-dlya-5-klassa

XXIV олимпиада юношеской математической школы задания и ответы 4-8 класс заочный тур 2020

Сохраните:

Ответы и задания для 4, 5, 6, 7, 8 класса XXIV олимпиады юношеской математической школы заочный тур 2020-2021 учебный год, официальная дата проведения: 13.09.2020-15.10.2020 (с 13 сентября по 15 октября 2020).

P.S свои ответы пишите в комментариях ниже, тем самым поможете другим ребятам, а они вам.

Ссылка для скачивания заданий для 4-8 класса: скачать задания

Заочный тур 2020 23-й олимпиады юношеской математической школы задания 4-8 класс:

Заочный тур ЮМШ задания и ответы 4 класс:

1)В отмеченных точках (см. рисунок) находятся 4 норы. В них живут хоббиты: Фродо, Сэм, Меррии Пиппин. Нора Фродо ближе к норе Мерри, чем к норе Пиппина. Анора Сэма находится ближе к реке, чем нора Мерри, но дальше от лесополосы, чем нора Пиппина. Кто где живёт? Ответ обоснуйте.

2)У курфюрста Георга 100 монет, некоторые из них фальшивые (возможно, все или ни одной). Георг может показывать одну или несколько монет эксперту, и тот будет говорить, сколько из них фальшивых .Проблема в том, что единственный на всю округу эксперт барон Мюнхгаузени, а он привирает: результат, названный бароном, всегда больше истинного на некоторое фиксированное (и неизвестное Георгу) натуральное число. Барона не смущает, что он может сказать, например, «три», если ему дали всего две монеты. Сможет ли Георг гарантированно выяснить, какие монеты фальшивые?

Ответ: сможет по следующей схеме. Пусть A – натуральное число, на которое постоянно привирает барон. Определим неизвестное А из 3 его ответов про 2 произвольно выбранные монеты.

  • 1) Даем отдельно первую из них. Барон отвечает числом подделок m1=e1+A, где пока неизвестное e1 – либо 0 (не фальшивая), либо 1 (фальшивая)
  • 2) Даем отдельно вторую. Барон отвечает числом подделок m2=e2+A, где пока неизвестное e2 – либо 0 (не фальшивая), либо 1 (фальшивая)
  • 3) Даем обе эти монеты. Барон отвечает числом подделок m12 = e1+e2+A, Из этих трех ответов m1, m2 и m12 вычисляем A по формуле A=m1+m2-m12; Далее можно вычислить e1=m1-A и e2=m2-A. Нулевое значение такой разности говорит о подлинности монеты, а единичное – о подделке. С оставшимися монетами поступаем аналогично: выбираем по одной и получаем на нее ответ барона m_i. Нулевая разность m_i-A свидетельствует о подлинности очередной монеты, а единачная – о подделке. Итого, для проверки 100 монет надо 101 раз спросить барона.

3)31 машина одновременно стартовала из одной точки на круговой трассе: первая машина—со скоростью 61 км/ч, вторая—62 км/ч, и т. д. (31-я—91 км/ч). Трасса узкая, и если одна машина на круг обгоняет другую, то они врезаются друг в друга, обе вылетают с трассы и выбывают из гонки. В конце концов осталась одна машина. С какой скоростью она едет?

4)Из куба 3×3×3 вырезали тоннель из трёх кубиков, соединяющий центральные клетки двух соседних граней (на рисунке они отмечены крестиками). Разрежьте остальное на фигурки такой же формы, как и тоннель (тоже из трёх кубиков).

5)Каждый из пяти друзей перемножил несколько последовательных чисел, начиная с 1. Оказалось, что одно из произведений равно сумме четырёх других. Найдите все возможные значения этого произведения и покажите, что других значений нет.

6)За круглым столом сидят 8 гномов, у каждого из которых есть по три алмаза. Стулья гномов пронумерованы по порядку от 1 до 8. Каждую минуту гномы одновременно делают следующее: делят все свои алмазы на две кучки (возможно, одна из кучек или обе кучки пустые), затем одну кучку отдают левому соседу, а другую— правому. Могут ли все алмазы оказаться у одного гнома?

Заочный тур ЮМШ задания и ответы 5 класс:

1)В отмеченных точках (см. рисунок) находятся 6 нор. В четырёх норах живут хобиты: Фродо, Сэм, Мерри и Пиппин. Ещё две норы пустуют, и обе расположены к норе Сэма ближе, чем нора Фродо. А нора Фродо находится ближе к реке, чем нора Мерри, но дальше от лесополосы, чем нора Пиппина. Кто где живёт? Ответ обоснуйте.

2)31 машина одновременно стартовала из одной точки на круговой трассе: первая машина – со скоростью 61 км/ч, вторая 62 км/ч, и т.д. (31-я – 91 км/ч). Трасса узкая, и если одна машина на круг обгоняет другую, то они врезаются друг в друга, обе вылетают с трассы и выбывают из гонки. В конце концов осталась одна машина. С какой скоростью она едет?

3)У курфюрста Георга 100 монет, некоторые из них фальшивые (возможно, все или ни одной). Георг может показывать от 10 до 20 монет эксперту, и тот будет говорить, сколько из них фальшивых. Проблема в том, что единственный на всю округу эксперт — барон Мюнхгаузен, а он привирает: результат, названный бароном, всегда больше истинного на некоторое фиксированное (и неизвестное Георгу) натуральное число. Барона не смущает, что он может сказать, например, «тринадцать», если ему дали всего двенадцать монет. Сможет ли Георг гарантированно выяснить, какие монеты фальшивые?

4)Исаак де Казобон хочет удалить из параллелепипеда 5 × 5 × 3 несколько кубиков так, чтобы появилась пещера, выходящая на поверхность только в двух местах: центрах соседних боковых граней (на рисунке они отмечены крестиками). Как это сделать так, чтобы оставшуюся часть параллелепипеда можно было бы сложить из параллелепипедов 1×1×2?

5)Каждый из пяти друзей перемножил несколько последовательных чисел, начиная с 1. Оказалось, что одно из произведений равно сумме четырёх других. Найдите все возможные значения этого произведения и покажите, что других значений нет.

6)За круглым столом сидят 8 гномов, у каждого из которых есть по три алмаза. Стулья гномов пронумерованы по порядку от 1 до 8. Каждую минуту гномы одновременно делают следующее: делят все свои алмазы на две кучки (возможно, одна из кучек или обе кучки пустые), затем одну кучку отдают левому соседу, а другую— правому. В некоторый момент все алмазы собрались у трёх гномов. У одного из гномов оказалось 7 алмазов. Сколько у каждого из других?

7)Можно ли в равенстве БАРАНКА + БАРАБАН + КАРАБАС = ПАРАЗИТ заменить все буквы цифрами (одинаковые буквы одинаковыми цифрами, а разные буквы разными цифрами), чтобы оно было верным?

Заочный тур ЮМШ задания и ответы 6 класс:

1)Нарисуйте на листе бумаги окружность, квадрат и треугольник так, чтобы после разрезов по нарисованным линиям лист распался на 22 части.

2)У курфюрста Георга 100 монет, некоторые из них фальшивые (возможно, все или ни одной). Георг может показывать от 10 до 20 монет эксперту, и тот будет говорить, сколько из них фальшивых. Проблема в том, что единственный на всю округу эксперт — барон Мюнхгаузен, а он привирает: результат, названный бароном, всегда больше истинного на некоторое фиксированное (и неизвестное Георгу) натуральное число. Барона не смущает, что он может сказать, например, «тринадцать», если ему дали всего двенадцать монет. Сможет ли Георг гарантированно выяснить, какие монеты фальшивые?

3)Упрямый робот «Инвертор» стоит на бесконечной плоскости и смотрит на восток. Этот робот понимает всего две команды: ШАГ и НАЛЕВО. Когда робот видит команду ШАГ, он передвигается вперёд ровно на 1 метр. Когда робот видит команду НАЛЕВО, он, оставаясь на месте, поворачивается налево ровно на 90◦. Робот называется упрямым потому, что когда в него вводят программу(последовательность команд),то он сначала выполняет всю программу, а затем выполняет эту же программу, инвертируя смысл команд: видя команду ШАГИ, он выполняет команду НАЛЕВО и наоборот. Используя команду ШАГ ровно два раза и команду НАЛЕВО сколько угодно раз, составьте для этого робота такую программу, чтобы после её упрямого выполнения он вернулся в исходную точку и смотрел на восток.

4)Каждый из пяти друзей перемножил несколько последовательных чисел, начиная с 1. Оказалось, что одно из произведений равно сумме четырёх других. Найдите все возможные значения этого произведения и покажите, что других значений нет.

5)За круглым столом сидят 8 гномов, у каждого из которых есть по три алмаза. Каждую минуту гномы одновременно делают следующее: делят все свои алмазы на две кучки (возможно, одна из кучек или обе кучки пустые), затем одну кучку отдают левому соседу, а другую — правому. В некоторый момент все алмазы собрались у трёх гномов. У одного из них семь алмазов. Сколько у двух других?

6)В квадрате 4×4 клетки раскрашены в несколько цветов так, что в любом прямоугольничке 1×3 есть две клетки одного цвета. Какое максимальное количество цветов может быть использовано?

7)В ряд стоят 50 мальчиков и 50 девочек в каком-то порядке. В этом ряду имеется ровно одна группа из 30 детей, стоящих подряд, в которой мальчиков и девочек поровну. Докажите, что найдётся группа из 70 детей подряд, в которой мальчиков и девочек также поровну.

Заочный тур ЮМШ задания и ответы 7 класс:

1)Министерство Правды заявило, что за январь занятость населения Океании упала на 15% от предыдущего уровня, а безработица выросла на 10% от предыдущего уровня. Какова теперь безработица в Океании, согласно заявлению Министерства? (Занятость—доля трудоспособного населения, имеющего работу, а безработица—не имеющего.)

2)Сумма факториалов трёх подряд идущих натуральных чисел делится на 61. Докажите, что последнее из чисел никак не меньше, чем 61. (Факториал числа n—это произведение всех чисел от 1 до n включительно.)

3)Таня запутала провод от наушников и сфотографировала узел, поверх которого положила атласную ленту (см. рисунок). Сколько существует вариантов соединения концов провода под лентой?

4)У курфюрста Георга 100 монет, некоторые из них фальшивые (возможно, все или ни одной). Георг может показывать от 10 до 20 монет эксперту, и тот будет говорить, сколько из них фальшивых. Проблема в том, что единственный на всю округу эксперт — барон Мюнхгаузен, а он привирает: результат, названный бароном, всегда больше истинного на некоторое фиксированное (и неизвестное Георгу) натуральное число. Барона не смущает, что он может сказать, например, «тринадцать», если ему дали всего двенадцать монет. Сможет ли Георг гарантированно выяснить, какие монеты фальшивые, обратившись к эксперту меньше 120 раз?

5)Двое по очереди ставят на доску 2020×2020 не перекрывающиеся домино, закрывающие по две клетки. Задача второго—покрыть домино всю доску, задача первого—помешать ему. Кто может обеспечить себе выигрыш?

6)В Лимонном царстве 2020 деревень. Некоторые пары деревень соединены напрямик мощёными дорогами. Сеть дорог устроена так, что для любых двух деревень есть ровно один способ переместиться из одной в другую, не проезжая дважды по одной дороге. Агент Апельсин хочет облететь как можно больше деревень на вертолёте. В целях конспирации он не будет посещать одну деревню дважды, и не будет посещать подряд деревни, соединенные дорогой напрямик. Сколько деревень ему гарантированно удастся облететь? Начать он может из любой деревни.

7)Миша придумал два составных числа: a и b. На доску в левый столбец он выписал все собственные натуральные делители числа a, в правый столбец—все собственные натуральные делители числа b. Одинаковых чисел на доске не оказалось. Миша хочет, чтобы число a + b не делилось ни на одну сумму двух чисел из разных столбцов. Докажите, что ему для этого достаточно стереть не более половины чисел из каждого столбца. (Делитель числа называется собственным, если он отличается от 1 и самого числа.)

Заочный тур ЮМШ задания и ответы 8 класс:

1)Министерство Правды заявило, что за январь занятость населения Океании упала на 15% от предыдущего уровня, а безработица выросла на 10% от предыдущего уровня. Какова теперь безработица в Океании, согласно заявлению Министерства? (Занятость—доля трудоспособного населения, имеющего работу, а безработица—не имеющего.)

2)Ася поделила любимое число Васи на свое любимое число, Буся поделила любимое число Васи на свое любимое число. Затем обе девочки записали на доску делитель, неполное частное и остаток. Пять чисел на доске—это 2020, 2020, 2021, 2021, 2021. Можно ли однозначно определить шестое?

3)У курфюрста Георга 100 монет, некоторые из них фальшивые (возможно, все или ни одной). Георг может показывать от 10 до 20 монет эксперту, и тот будет говорить, сколько из них фальшивых. Проблема в том, что единственный на всю округу эксперт — барон Мюнхгаузен, а он привирает: результат, названный бароном, всегда больше истинного на некоторое фиксированное (и неизвестное Георгу) натуральное число. Барона не смущает, что он может сказать, например, «тринадцать», если ему дали всего двенадцать монет. Сможет ли Георг гарантированно выяснить, какие монеты фальшивые, обратившись к эксперту меньше 120 раз?

4)В ряд стоят 50 мальчиков и 50 девочек в каком-то порядке. В этом ряду имеется ровно одна группа из 30 детей, стоящих подряд, в которой мальчиков и девочек поровну. Докажите, что найдётся группа из 70 детей подряд, в которой мальчиков и девочек также поровну.

5)В треугольнике ABC угол B прямой. На стороне BC отмечена середина M, а на гипотенузе нашлась такая точка K, что AB = AK и ∠BKM = 45◦. Кроме этого, на сторонах AB и AC нашлись такие точки N и L соответственно, что BC = CL и ∠BLN = 45◦. В каком отношении точка N делит сторону AB?

6)Двое по очереди ставят на доску 2021 × 2021 неперекрывающиеся домино, закрывающие по две клетки. Задача второго—покрыть домино всю доску, кроме одной клетки, задача первого—помешать ему. Кто может обеспечить себе выигрыш?

7)Миша придумал два составных числа: a и b. На доску в левый столбец он выписал все собственные натуральные делители числа a, в правый столбец—все собственные натуральные делители числа b. Одинаковых чисел на доске не оказалось. Миша хочет, чтобы число a + b не делилось ни на одну сумму двух чисел из разных столбцов. Докажите, что ему для этого достаточно стереть не более половины чисел из каждого столбца. (Делитель числа называется собственным, если он отличается от 1 и самого числа.)

Источник статьи: http://100balnik.ru.com/xxiv-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B0-%D1%8E%D0%BD%D0%BE%D1%88%D0%B5%D1%81%D0%BA%D0%BE%D0%B9-%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B9/

Читайте также:  Лучший подарок любимой девушке это
Оцените статью